老虎游戏机

教师名录
老虎游戏机

周 博讲师

工作地点:兴庆校区南一楼

邮       箱:[email protected]

个人主页:

教育背景

2003.9-2007.7 南京大学,软件工程学士学位。

2007.9-2009.9 日本早稻田大学, IPS(Information, Production and system)大老虎游戏机 ,信息方向硕士学位。

2009.9-2018.9 日本早稻田大学, IPS(Information, Production and system)大老虎游戏机 , 工学博士学位。

研究领域

支持向量机(SVM)及核方法

半监督学习

深度学习

机器学习方法在经济学领域的应用

主要论文

杂志论文发表(五篇SCI检索)

1.B. Zhou, B. Chen and J. Hu, "Quasi-linear Support Vector Machine for Nonlinear Classification",IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences,Vol.E97-A,No.7, July, pp.1587-1594, 2014.

2. W. Li,B. Zhou, B. Chen and J. Hu, "A Deep Neural Network Based Quasi-linear Kernel for Support Vector Machines",IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences,Vol.E99-A, No.12, Dec., 2016.

3. W.Li,B.Zhou, B.Chen and J.Hu, "A Geometry-Based Two-step Method for Nonlinear Classification Using Quasi-Linear Support Vector Machine",IEEJ Trans. on Electrical and Electronic Engineering, Vol.12, No.6, Nov., 2017.

4.B.Zhou, W.Li and J.Hu, "A New Segmented Oversampling Method for Imbalanced Data Classification Using Quasi-Linear Support Vector Machine",IEEJ Trans. on Electrical and Electronic Engineering,Vol.12, No.6, Nov., 2017.

5. B. Zhou, W. Li and J. Hu, "A Coarse-to-Fine Two-step Method for Semi-Supervised Classification Using Quasi-Linear Laplacian SVM", submitted toIEEJ Trans. on Electrical and Electronic Engineering.(Received)

会议论文发表:

1.B. Zhouand J. Hu, "A Dynamic Pattern Recognition Approach Based on Neural Network for Stock Time-Series", inProc. of World Congress on Nature and Biologically Inspired Computing(NaBIC 2009) (India), 12, 2009, pp.1552-1555.

2.B. Zhou, C. Yang, H. Guo and J. Hu, "A Quasi-linear SVM Combined with Assembled SMOTE for Imbalanced Data Classification", inProc. of 2013 IEEE International Joint Conference on Neural Networks(IJCNN'2013) (Dallas), Aug., 2013, pp.2351-2357.

3. C. Hu,B. Zhou, and J. Hu, "Fast Support Vector Data Description Training Using Edge Detection on Large Datasets", inProc. of 2014 IEEE International Joint Conference on Neural Networks (IJCNN'2014) (Beijing), July, 2014, pp.2176-2182.(Best Student Paper Award - Finalist)

4.B. Zhou, C. Hu, B. Chen and J. Hu, "A Transductive Support Vector Machine with Adjustable Quasi-linear Kernel for Semi-supervised Data Classification", inProc. of 2014 IEEE International Joint Conference on Neural Networks(IJCNN'2014) (Beijing), July, 2014, pp.1409-1415.

5.B. Zhou, D. Fu, C. Dong and J. Hu, "A Transductive SVM with Quasi-linear Kernel Based on Cluster Assumption for Semi-Supervised Classification", inProc. of 2015 IEEE International Joint Conference on Neural Networks(IJCNN'2015) (Killarney), July, 2015.

6. D. Fu,B. Zhouand J. Hu, "Improving SVM Based Multi-label Classification by Using Label Relationship", inProc. of 2015 IEEE International Joint Conference on Neural Networks (IJCNN'2015) (Killarney), July, 2015.

7. C. Dong,B. Zhouand J. Hu, "A Hierarchical SVM Based Multiclass Classification by Using Similarity Clustering", inProc. of 2015 IEEE International Joint Conference on Neural Networks (IJCNN'2015) (Killarney), July, 2015.

8. W. Li,B. Zhouand J. Hu, "A Kernel Level Composition of Multiple Local Classifiers for Nonlinear Classification", in Proc. of 2016 IEEE International Joint Conference on Neural Networks (IJCNN'2016) (Vancouver), July, 2016, pp.3845-3850.

9. W. Li, B. Chen,B. Zhou, & J. Hu. A mixture of multiple linear classifiers with sample weight and manifold regularization. In Proc. of 2017 IEEE International Joint Conference on Neural Networks (IJCNN'2017), May, 2017. pp. 3747-3752.

科研项目

参与了国家自然科学青年基金项目“石油储层识别中软计算与硬计算融合的理论与方法研究”的研究工作(项目编码:71103163, 主持人:郭海湘)。研究成果发表于2013年国际神经网络大会,B. Zhou, C. Yang, H. Guo and J. Hu, "A Quasi-linear SVM Combined with Assembled SMOTE for Imbalanced Data Classification"。

获奖情况

论文C. Hu, B. Zhou, and J. Hu, "Fast Support Vector Data Description Training Using Edge Detection on Large Datasets" 获得2014 年国际神经网络大会最佳学生论文奖提名(大会共提名两篇)

老虎游戏机-线上角子老虎游戏机 数据库 建行金融科技菁英班 网站地图